
CSSE 220 Day 3

Arrays, ArrayLists,
Wrapper Classes, Auto-boxing,

Enhanced for loop

Check out ArrayListPractice from SVN

Questions?

Array Examples Handout

• Look at the Array Examples Handout (just the
array section, not the array list section)

• Form groups of 2

• Study how arrays are used and answer the
questions in the quiz

Go to
http://codingbat.com/java/Array-2

• Work in your groups to solve fizArray3, bigDiff,
shiftLeft

• When you finish all 3, call me over to take a
look

• If you finish early, try zeroFront

Array Types

 Group a collection of objects under a single name

 Elements are referred to by their position, or
index, in the collection (0, 1, 2, …)

 Syntax for declaring: ElementType[] name

 Declaration examples:

◦ A local variable: double[] averages;

◦ Parameters: public int max(int[] values)
{…}

◦ A field: private Investment[] mutualFunds;

Allocating Arrays

 Syntax for allocating:
new ElementType[length]

 Creates space to hold values
 Sets values to defaults

◦ 0 for number types
◦ false for boolean type
◦ null for object types

 Examples:
◦ double[] polls = new double[50];
◦ int[] elecVotes = new int[50];
◦ Dog[] dogs = new Dog[50];

Don’t forget this
step!

This does NOT
construct any Dogs. It
just allocates space for
referring to Dogs (all
the Dogs start out as

null)

Reading and Writing
Array Elements

 Reading:
◦ double exp = polls[42] * elecVotes[42];

 Writing:
◦ elecVotes[37] = 11;

 Index numbers run from 0 to array length – 1
 Getting array length: elecVotes.length

Reads the element with
index 42.

Sets the value in
slot 37.

No parentheses, array length
is (like) a field

Arrays: Comparison Shopping

Arrays… Java Python lists

have fixed length Yes No

are initialized to default values Yes n/a

track their own length Yes Yes

trying to access “out of
bounds” stops program before
worse things happen

Yes Yes

Allow negative indexing No Yes

ArrayList Examples Handout

• Look at the ArrayList section of the examples
handout

• Study how arrayLists are used and answer the
questions in the quiz

• Then solve the 3 problems in ArrayListPractice
(you downloaded it from SVN)

• When you finish, call me over to take a look

What if we don’t know how many
elements there will be?

 ArrayLists to the rescue

 Example:

◦ ArrayList<State> states = new ArrayList<State>();

◦

states.add(new State(“Indiana”, 11, .484, .497));

 ArrayList is a generic class
◦ Type in <brackets> is called a type parameter

Element type

Variable type

Adds new element to
end of list

Constructs new, empty
list

ArrayList Gotchas

• Type parameter can’t be a primitive type
– Not: ArrayList<int> runs;
– But: ArrayList<Integer> runs;

• Use get method to read elements
– Not: runs[12]
– But: runs.get(12)

• Use size() not length
– Not: runs.length
– But: runs.size()

Lots of Ways to Add to List

 Add to end:
◦ victories.add(new WorldSeries(2011));

 Overwrite existing element:
◦ victories.set(0,new WorldSeries(1907));

 Insert in the middle:
◦ victories.add(1, new WorldSeries(1908));
◦ Pushes elements at indexes 1 and higher up one

 Can also remove:
◦ victories.remove(victories.size() - 1)

So, what’s the deal with
primitive types?

 Problem:
◦ ArrayList’s only hold objects

◦ Primitive types aren’t objects

 Solution:
◦ Wrapper classes—instances are

used to “turn” primitive types
into objects

◦ Primitive value is stored in a
field inside the object

Primitive Wrapper

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

Auto-boxing Makes Wrappers Easy

 Auto-boxing: automatically enclosing a primitive type
in a wrapper object when needed

 Example:

◦ You write: Integer m = 6;

◦ Java does: Integer m = new Integer(6);

◦ You write: Integer answer = m * 7;

◦ Java does: int temp = m.intValue() * 7;
Integer answer = new Integer(temp);

Auto-boxing Lets Us Use ArrayLists
with Primitive Types

 Just have to remember to use wrapper class
for list element type

 Example:
◦ ArrayList<Integer> runs =

new ArrayList<Integer>();
runs.add(9); // 9 is auto-boxed

◦ int r = runs.get(0); // result is
unboxed

Enhanced For Loop and Arrays

 Old school
double scores[] = …
double sum = 0.0;
for (int i=0; i < scores.length; i++) {

sum += scores[i];
}

 New, whiz-bang, enhanced for loop
double scores[] = …
double sum = 0.0;
for (double score : scores) {

sum += score;
}

 No index variable
(easy, but limited
in 2 respects)

 Gives a name
(score here) to
each element

Say “in”

Enhanced For and ArrayList’s

 ArrayList<State> states = …

int total = 0;

for (State state : states) {

total +=

state.getElectoralVotes();

}

